

Welcome to web3data-py’s documentation!

Contents:

	web3data-py Python API
	Obtaining an API Key

	Installation

	Usage

	Development

	Resources

	Credits

	Installation
	Stable release

	From sources

	Usage
	Supported Chains and Handlers

	web3data Package
	Subpackages

	Module contents

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.7 (2021-02-10)

	0.1.6 (2021-01-25)

	0.1.5 (2020-05-22)

	0.1.4 (2020-04-28)

	0.1.3 (2020-03-16)

	0.1.1 + 0.1.2 (2020-03-15)

	0.1.0 (2020-03-15)

	0.0.1 (2020-03-13)

Indices and tables

	Index

	Module Index

	Search Page

web3data-py Python API

[image: _images/web3data.svg]
 [https://pypi.python.org/pypi/web3data][image: _images/web3data-py.svg]
 [https://travis-ci.org/github/dmuhs/web3data-py][image: Documentation Status]
 [https://web3data-py.readthedocs.io/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/dmuhs/web3data-py/][image: _images/badge.svg]
 [https://coveralls.io/github/dmuhs/web3data-py?branch=master]
Obtaining an API Key

Visit Amberdata.io [https://amberdata.io/pricing] and select the developer plan to get started!
Pass your API key to the client instance, either has a hardcoded string, or through an environment
variable:

from web3data import Web3Data
w3d = Web3Data("<your key>")

… and start querying!

Installation

To install web3data-py, run this command in your terminal:

$ pip install web3data

For alternative ways to install the package, check out the
installation instructions [https://web3data-py.readthedocs.io/installation.html]

Usage

from web3data import Web3Data

w3d = Web3Data("<your key>")
print(w3d.eth.address.information("0x06012c8cf97bead5deae237070f9587f8e7a266d"))

This will print the raw response, such as:

{'status': 200,
 'title': 'OK',
 'description': 'Successful request',
 'payload': {'balance': '5296672643815245964',
 'balanceIn': '3.0894905437937322715551e+22',
 'balanceOut': '3.0889608765293507469587e+22',
 'addressType': 'contract',
 'changeInPrice': None,
 'contractTypes': ['ERC721'],
 'decimals': '0',
 'name': 'CryptoKitties',
 'numHolders': '84753',
 'numTokens': '1860119',
 'numTransfers': '2723659',
 'symbol': 'CK',
 'totalSupply': '1860119.0000000000000000',
 'totalValueUSD': None,
 'unitValueUSD': None}}

Development

Check out our contribution guidelines [https://web3data-py.readthedocs.io/contributing.html]
to see how to install the development version and run the test suite!

Don’t have the time to contribute? Open up an issue and we’ll get it fixed!
Simply like the project? Tip me some BAT [https://brave.com/dmu968] to sponsor development! :)

Resources

	Free software: MIT license

	Documentation: https://web3data-py.readthedocs.io.

Credits

The initial version of this package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install web3data-py, run this command in your terminal:

$ pip install web3data

This is the preferred method to install web3data-py, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for web3data-py can be downloaded from the Github repo [https://github.com/dmuhs/web3data-py].

You can either clone the public repository:

$ git clone git://github.com/dmuhs/web3data-py

Or download the tarball [https://github.com/dmuhs/web3data-py/tarball/master]:

$ curl -OJL https://github.com/dmuhs/web3data-py/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use web3data-py in a project:

from web3data import Web3Data

w3d = Web3Data("<your key>")
print(w3d.eth.address.information("0x06012c8cf97bead5deae237070f9587f8e7a266d"))

This will print the raw response, such as:

{'status': 200,
 'title': 'OK',
 'description': 'Successful request',
 'payload': {'balance': '5296672643815245964',
 'balanceIn': '3.0894905437937322715551e+22',
 'balanceOut': '3.0889608765293507469587e+22',
 'addressType': 'contract',
 'changeInPrice': None,
 'contractTypes': ['ERC721'],
 'decimals': '0',
 'name': 'CryptoKitties',
 'numHolders': '84753',
 'numTokens': '1860119',
 'numTransfers': '2723659',
 'symbol': 'CK',
 'totalSupply': '1860119.0000000000000000',
 'totalValueUSD': None,
 'unitValueUSD': None}}

Supported Chains and Handlers

Each endpoint of the Amberdata web3 API can be hit for a specified chain. web3data-py
follows the paradigm set by web3data-js [https://github.com/web3data/web3data-js] and allows
easy switching between chains by providing them as client attributes. Each attribute implements
a sub-handler for several kinds of data, such as address-, market-, or transaction-related
information.

The methods for each chain are fixed, however some chains might raise an APIError if the
data is unavailable. For example, token-related queries on Bitcoin will raise an exception, because
Bitcoin does not allow for smart-contracts and token implementations on-chain.

In [1]: w3d.eth.token.supply_latest("0x9f8f72aa9304c8b593d555f12ef6589cc3a579a2")
Out[1]:
{'status': 200,
 'title': 'OK',
 'description': 'Successful request',
 'payload': {'decimals': '18',
 'circulatingSupply': '985776.2571660122663385',
 'totalBurned': '1014178.1439074671310546',
 'totalMinted': '1999953.40106534372698',
 'totalSupply': '985775.2571578765959254',
 'totalTransfers': '678572'}}

And on the other hand:

In [1]: w3d.btc.token.supply_latest("0x9f8f72aa9304c8b593d555f12ef6589cc3a579a2")

APIError Traceback (most recent call last)
<ipython-input-12-93158fe945ad> in <module>
----> 1 w3d.btc.token.supply_latest("0x9f8f72aa9304c8b593d555f12ef6589cc3a579a2")

~/repos/web3data-py/web3data/handlers/token.py in supply_latest(self, address)
 115 :return: The API response parsed into a dict
 116 """
--> 117 self._check_chain_supported()
 118 return self._token_query(address, "supplies/latest", {})
 119

~/repos/web3data-py/web3data/handlers/base.py in _check_chain_supported(self)
 34 def _check_chain_supported(self):
 35 if self.chain in self.LIMITED:
---> 36 raise APIError(f"This method is not supported for {self.chain}")
 37
 38 @staticmethod

APIError: This method is not supported for Chains.BTC

This behaviour aims to notify the developer as early as possible about invalid code and
business logic errors that need fixing right away.

Currently, Amberdata supports the following chains, which are implemented as client instance
attributes:

	w3d.aion

	w3d.bch

	w3d.bsv

	w3d.btc

	w3d.eth

	w3d.eth_rinkeby

	w3d.ltc

	w3d.xlm

	w3d.zec

Each chain attribute implements the following sub-handlers for specific API queries:

	address

	block

	contract

	market

	signature

	token

	transaction

Further information on the implementation details can be found in the
package documentation [https://web3data-py.readthedocs.io/web3data.html].

web3data Package

Subpackages

	web3data.client

	web3data.exceptions

	web3data.chains

	web3data.handlers
	Subpackages
	web3data.handlers.address

	web3data.handlers.api

	web3data.handlers.base

	web3data.handlers.block

	web3data.handlers.contract

	web3data.handlers.market

	web3data.handlers.signature

	web3data.handlers.token

	web3data.handlers.transaction

	web3data.handlers.websocket

	Module contents

Module contents

Top-level package for web3data-py.

web3data.client

This module contains the main API client class.

	
class web3data.client.Web3Data(api_key: str)

	Bases: object

The Amberdata API client object.

web3data.exceptions

This module contains API-related exceptions.

	
exception web3data.exceptions.APIError

	Bases: Exception

An exception denoting generic API errors.

This error is raised when the API returns invalid response data, like invalid JSON.

	
exception web3data.exceptions.EmptyResponseError

	Bases: web3data.exceptions.APIError

An exception denoting an empty API response.

This error is raised when the API response content is empty, or it contains an empty JSON
object.

web3data.chains

This module contains an enum with names of supported chains.

	
class web3data.chains.Chains(value)

	Bases: enum.Enum

Blockchains supported by the Amberdata API.

	
BCH = 2

	

	
BSV = 3

	

	
BTC = 1

	

	
ETH = 4

	

	
ETH_RINKEBY = 5

	

	
LTC = 6

	

	
ZEC = 7

	

web3data.handlers

Subpackages

	web3data.handlers.address

	web3data.handlers.api

	web3data.handlers.base

	web3data.handlers.block

	web3data.handlers.contract

	web3data.handlers.market

	web3data.handlers.signature

	web3data.handlers.token

	web3data.handlers.transaction

	web3data.handlers.websocket

Module contents

This package defines the sub-handlers and the main one.

web3data.handlers.address

This module contains the address subhandler.

	
class web3data.handlers.address.AddressHandler(initial_headers: Dict[str, str], chain: web3data.chains.Chains)

	Bases: web3data.handlers.base.BaseHandler

The subhandler for address-related queries.

	
adoption(address: str, **kwargs) → Dict

	Retrieves the historical adoption for the specified address.

	Parameters

	address – The address to fetch information for

	Key timeFormat

	The time format to use with the timestamps: milliseconds/ms or iso/iso8611 (str)

	Key timeFrame

	The time frame to return the historical data in (str):
by day (1d, 2d, …, all),
by hour (1h, 2h, …, 72h) or
by minute (1m, 2m, …, 360m)

	Key timePeriod

	The time period (in minutes) to aggregate the historical data (str)

	Returns

	The API response parsed into a dict

	
balance_historical(address: str, **kwargs) → Dict

	Retrieves the historical (time series) account balances for the
specified address.

	Parameters

	address – The address to fetch information for

	Key blockNumber

	Filter by account balances at block number (int)

	Key startDate

	Filter by account balances which happened after this date (int)

	Key endDate

	Filter by account balances which happened before this date (int)

	Key value

	Filter by account balances where the balance is equal to this value (int)

	Key valueGt

	Filter by account balances where the balance is greater than this value (int)

	Key valueGte

	Filter by account balances where the balance is greater than or equal to this value (int)

	Key valueLt

	Filter by account balances where the balance is less than this value (int)

	Key valueLte

	Filter by account balances where the balance is less than or equal to this value (int)

	Key includePrice

	Indicates whether or not to include price data with the results. Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page (int)

	Returns

	The API response parsed into a dict

	
balance_latest(address: str, **kwargs) → Dict

	Retrieves the current account balance for the specified address.

	Parameters

	address – The address to fetch information for

	Key includePrice

	Indicates whether or not to include price data with the results. Options: true, false. (str)

	Key currency

	The currency of the price information. Options: usd, btc.
Only used in conjunction with includePrice. (str)

	Returns

	The API response parsed into a dict

	
balances(address: str, **kwargs) → Dict

	Retrieves the latest account and token balances for the specified
address.

	Parameters

	address – The address to fetch information for

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Key timeFormat

	The time format to use for the timestamps (milliseconds, ms, iso, iso8611). (str)

	Returns

	The API response parsed into a dict

	
balances_batch(addresses: List[str], **kwargs) → Dict

	Retrieves the latest account and token balances for the specified
addresses.

This is super useful if you want to get an entire portfolio’s summary in a single call.
Get totals for ETH & all token amounts with market prices.

	Parameters

	addresses – The addresses to fetch information for

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Key timeFormat

	The time format to use for the timestamps (milliseconds, ms, iso, iso8611). (str)

	Returns

	The API response parsed into a dict

	
information(address: str, **kwargs) → Dict

	Retrieves information about the specified address.

This includes network(s) and blockchain(s) this address exist within.

	Parameters

	address – The address to fetch information for

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Returns

	The API response parsed into a dict

	
internal_messages(address: str, **kwargs) → Dict

	Retrieves internal messages where this address is either the
originator or a recipient.

	Parameters

	address – The address to fetch information for

	Key blockNumber

	Filter by internal messages contained within this block number (int)

	Key from

	Filter by internal messages for this “from” address (str)

	Key to

	Filter by internal messages for this “to” address (str)

	Key transactionHash

	Filter by internal messages for this transaction (str)

	Key startDate

	Filter by internal messages which happened after this date (int)

	Key endDate

	Filter by internal messages which happened before this date (int)

	Key validationMethod

	The validation method to be added to the response: none, basic, full.
Default: none. (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page (int)

	Returns

	The API response parsed into a dict

	
logs(address: str, **kwargs) → Dict

	Retrieves the logs for the transactions where this address is either
the originator or a recipient.

	Parameters

	address – The address to fetch information for

	Key blockNumber

	Filter by logs contained in this block number (int)

	Key startDate

	Filter by logs which happened after this date (int)

	Key endDate

	Filter by logs which happened before this date (int)

	Key topic

	Filter by logs containing this topic (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page (int)

	Returns

	The API response parsed into a dict

	
metadata(address: str, **kwargs) → Dict

	Retrieves statistics about the specified address: balances,
holdings, etc.

	Parameters

	address – The address to fetch information for

	Key timeFormat

	The time format to use for the timestamps (milliseconds, ms, iso, iso8611). (str)

	Returns

	The API response parsed into a dict

	
metrics() → Dict

	Get metrics for all addresses that have exist publicly for a given
blockchain.

Default metrics are for Ethereum over a 24h period.

	Returns

	The API response parsed into a dict

	
pending_transactions(address: str, **kwargs) → Dict

	Retrieves pending transactions the specified address is involved in.

	Parameters

	address – The address to fetch information for

	Key from

	Filter by transactions for this “from” address. (str)

	Key to

	Filter by transactions for this “to” address (str)

	Key startDate

	Filter by transactions which happened after this date. (int)

	Key endDate

	Filter by transactions which happened before this date. (int)

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Key page

	The page number to return. (int)

	Key size

	The number of records per page. (int)

	Returns

	The API response parsed into a dict

	
token_balances_historical(address: str, **kwargs) → Dict

	Retrieves the historical (time series) token balances for the
specified address.

	Parameters

	address – The address to fetch information for

	Key amount

	Filters by token balances which value is equal to this amount (int)

	Key amountGt

	Filter by token balances which value is greater than this amount (int)

	Key amountGte

	Filter by token balances which value is greater than or equal to this amount (int)

	Key amountLt

	Filter by token balances which value is less than this amount (int)

	Key amountLte

	Filter by token balances which value is less than or equal to this amount (int)

	Key tokenHolder

	Filter by token balances which are held by this address (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page (int)

	Returns

	The API response parsed into a dict

	
token_balances_latest(address: str, **kwargs) → Dict

	Retrieves the tokens this address is holding.

	Parameters

	address – The address to fetch information for

	Key direction

	The direction by which to sort the tokens (ascending or descending). (str)

	Key includePrice

	Indicates whether or not to include price data with the results. Options: true, false. (str)

	Key currency

	The currency of the price information (usd or eth.)
- only used in conjunction with includePrice. (str)

	Key sortType

	The metric by which to rank the tokens (amount, name, symbol). (str)

	Key page

	The page number to return. (str)

	Key size

	The number of records per page. (str)

	Returns

	The API response parsed into a dict

	
token_transfers(address: str, **kwargs) → Dict

	Retrieves all token transfers involving the specified address.

	Parameters

	address – The address to fetch information for

	Key amount

	Filter by token transfers which value is equal to this amount. (int)

	Key amountGt

	Filter by token transfers which value is greater than this amount. (int)

	Key amountGte

	Filter by token transfers which value is greater than or equal to this amount. (int)

	Key amountLt

	Filter by token transfers which value is less than this amount. (int)

	Key amountLte

	Filter by token transfers which value is less than or equal to this amount (int)

	Key blockNumber

	Filter by token transfers with this block number. (int)

	Key recipientAddress

	Filter by token transfers which recipient is the specified address. (str)

	Key senderAddress

	Filter by token transfers which sender is the specified address. (str)

	Key startDate

	Filter by token transfers which happened after this date. (int)

	Key endDate

	Filter by token transfers which happened before this date. (int)

	Key tokenAddress

	Filter by token transfers for this token. (str)

	Key transactionHash

	Filter by token transfers for this transaction hash. (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page. (int)

	Key validationMethod

	The validation method to be added to the response: none, basic, full.
Default: none. (str)

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information. Options: usd, btc.
Only used in conjunction with includePrice. (str)

	Returns

	The API response parsed into a dict

	
total(**kwargs) → Dict

	Retrieves every Ethereum address that has been seen on the network.

	Key hash

	Filter by a specific address (str)

	Key blockNumber

	Filter by addresses first encountered at this block number (int)

	Key blockNumberGt

	Filter by addresses first encountered after this block number,
not including this blocknumber (int)

	Key blockNumberGte

	Filter by addresses first encountered after this block number,
including this block number (str)

	Key blockNumberLt

	Filter by addresses first encountered before this block number,
not including this block number (int)

	Key blockNumberLte

	Filter by addresses first encountered before this block number,
including this block number (str)

	Key startDate

	Filter by addresses first encountered after this date (int)

	Key endDate

	Filter by addresses first encountered after before date (int)

	Key type

	Filter by addresses of the specified type (EOA or CONTRACT) (str)

	Key transactionHash

	Filter by addresses first encountered at this transaction hash (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page. (int)

	Returns

	The API response parsed into a dict

	
transactions(address: str, **kwargs) → Dict

	Retrieves the transactions where this address was either the
originator or a recipient.

	Parameters

	address – The address to fetch information for

	Key blockNumber

	Filter by transactions for this block number. (int)

	Key from

	Filter by transactions for this “from” address. (str)

	Key to

	Filter by transactions for this “to” address (str)

	Key startDate

	Filter by transactions which happened after this date. (date)

	Key endDate

	Filter by transactions which happened before this date. (date)

	Key validationMethod

	The validation method to be added to the response: none, basic, full.
Default: none. (str)

	Key includeFunctions

	Indicates whether or not to include functions (aka internal messages)
information for each transaction, if available (false|true). (bool)

	Key includeLogs

	Indicates whether or not to include log information for each transaction,
if available (false|true). (bool)

	Key includeTokenTransfers

	Indicates whether or not to include token transfers information for
each transaction, if available (false|true). (bool)

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Key page

	The page number to return. (int)

	Key size

	The number of records per page. (int)

	Returns

	The API response parsed into a dict

	
usage(address: str, **kwargs) → Dict

	Retrieves the historical usage for the specified address.

	Parameters

	address – The address to fetch information for

	Key timeFormat

	The time format to use with the timestamps: milliseconds/ms or iso/iso8611 (str)

	Key timeFrame

	The time frame to return the historical data in:
by day (1d, 2d, …, all),
by hour (1h, 2h, …, 72h) or
by minute (1m, 2m, …, 360m) (str)

	Key timePeriod

	The time period (in minutes) to aggregate the historical data. (str)

	Returns

	The API response parsed into a dict

web3data.handlers.api

This module contains the main API handler class.

	
class web3data.handlers.api.APIHandler(api_key: str, blockchain_id: str, chain: web3data.chains.Chains)

	Bases: object

The API handler object for client requests.

	
rpc(method: str, params: List[str], ident: int = 1)

	Perform an HTTP POST RPC call on the API.

Consult the docs here for further details on supported commands:
https://docs.amberdata.io/reference#rpc-overview

	Parameters

	
	method – The RPC method to call

	params – Parameters attached to the RPC call

	ident – RPC call identifier

web3data.handlers.base

This module contains the API handler’s base class.

	
class web3data.handlers.base.BaseHandler(chain: web3data.chains.Chains)

	Bases: object

The API handler base class.

This class defines the basic methods of performing REST API endpoint queries as well as RPC
queries, which are implemented across all handler classes to standardize API requests.

	
LIMITED = (<Chains.BTC: 1>, <Chains.BCH: 2>, <Chains.BSV: 3>, <Chains.LTC: 6>, <Chains.ZEC: 7>)

	

	
static raw_query(base_url: str, route: str, headers: Dict[str, str], params: Dict[str, str]) → Union[Dict, str]

	Perform an HTTP GET request on an API REST endpoint.

	Parameters

	
	base_url – The API base URL (common prefix)

	route – The endpoint route after the base (variable suffix)

	headers – Headers to attach to the API request

	params – Query parameters to attach to the URL

	Returns

	The API response parsed into a dict

web3data.handlers.block

This module contains the address subhandler.

	
class web3data.handlers.block.BlockHandler(initial_headers: Dict[str, str], chain: web3data.chains.Chains)

	Bases: web3data.handlers.base.BaseHandler

The subhandler for block-related queries.

	
functions(block_id: str, **kwargs) → Dict

	Retrieves all the functions which were called at the specified block
number or hash.

	Parameters

	block_id – The block’s ID to fetch information for

	Key validationMethod

	The validation method to be added to the response:
none, basic, full. Default: none. (str)

	Returns

	The API response parsed into a dict

	
logs(block_id: str, **kwargs) → Dict

	Retrieves all the logs at the specified block number or hash.

	Parameters

	block_id – The block’s ID to fetch information for

	Key validationMethod

	The validation method to be added to the response:
none, basic, full. Default: none. (str)

	Key transactionHash

	Filter by logs for this transaction. (str)

	Returns

	The API response parsed into a dict

	
metrics_historical(**kwargs) → Dict

	Get metrics for historical confirmed blocks for a given blockchain.

	Key timeFormat

	The time format to use for the timestamps (milliseconds, ms, iso, iso8611). (str)

	Key timeFrame

	time frame to return the historical data in, options: (1m, 5m, 1h, 1d, 1w) (str)

	Key startDate

	Filter by data after this date. (str)

	Key endDate

	Filter by data before this date. (str)

	Returns

	The API response parsed into a dict

	
metrics_latest(**kwargs) → Dict

	Get metrics for recent confirmed blocks for a given blockchain.

	Key timeFormat

	The time format to use for the timestamps (milliseconds, ms, iso, iso8611). (str)

	Returns

	The API response parsed into a dict

	
single(block_id: str, **kwargs) → Dict

	Retrieves the block specified by its id (number or hash).

	Parameters

	block_id – The block’s ID to fetch information for

	Key validationMethod

	The validation method to be added to the response: none, basic, full.
Default: none. (str)

	Key timeFormat

	The time format to use for the timestamps (milliseconds, ms, iso, iso8611). (str)

	Returns

	The API response parsed into a dict

	
token_transfers(block_id: str, **kwargs) → Dict

	Retrieves all the token which were transferred at the specified
block number.

	Parameters

	block_id – The block’s ID to fetch information for

	Key amount

	Filter by tokens transfers where the number of tokens is equal
to the specified amount. (int)

	Key amountGt

	Filter by token transfers where the number of tokens is more than
the specified amount. (int)

	Key amountGte

	Filter by token transfers where the number of tokens is more
than or equal to the specified amount. (int)

	Key amountLt

	Filter by token transfers where the number of tokens is less
than the specified amount. (int)

	Key amountLte

	Filter by token transfers where the number of tokens is less
than or equal to the specified amount. (int)

	Key from

	Filter by token transfers originating from this address. (str)

	Key to

	Filter token transfers received by this address. (str)

	Key tokenAddress

	Filter by token transfers for this token. (str)

	Key transactionHash

	Filter by token transfers for this transaction. (str)

	Key includePrice

	Indicates whether or not to include price data with the results. (bool)

	Key currency

	The currency of the price information. Options: usd, btc.
Only used in conjunction with includePrice. (str)

	Returns

	The API response parsed into a dict

	
total(**kwargs) → Dict

	Retrieves all the blocks within the specified range.

	Key startNumber

	The range of blocks to return, inclusive (startNumber and endNumber
should be both specified, or both empty) (str)

	Key endNumber

	The end of the range of blocks to return, exclusive (startNumber and endNumber
should be both specified, or both empty) (str)

	Key size

	The number of results to return. (int)

	Key validationMethod

	The validation method to be added to the response:
none, basic, full. Default: none. (str)

	Returns

	The API response parsed into a dict

	
transactions(block_id: str, **kwargs) → Dict

	Retrieves all the transactions included in a specified block id.

	Parameters

	block_id – The block’s ID to fetch information for

	Key includeFunctions

	Indicates whether or not to include functions (aka internal messages)
information for each transaction, if available. Options: true, false. (bool)

	Key includeTokenTransfers

	Indicates whether or not to include token transfers information
for each transaction, if available. Options: true, false. (bool)

	Key includeLogs

	Indicates whether or not to include log information for each transaction,
if available. Options: true, false. (bool)

	Key validationMethod

	The validation method to be added to the response: none, basic, full.
Default: none. (str)

	Key currency

	The currency of the price information. Options: usd, btc. Only used in
conjunction with includePrice. (str)

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key startDate

	Filter by transactions executed after this date. Note that the interval
can not exceed 1 minute (startDate and endDate should be both specified, or both empty) (int)

	Key endDate

	Filter by transactions executed before this date. Note that the interval
can not exceed 1 minute (startDate and endDate should be both specified, or both empty). (int)

	Key size

	The number of results to return. (int)

	Returns

	The API response parsed into a dict

web3data.handlers.contract

This module contains the address subhandler.

	
class web3data.handlers.contract.ContractHandler(initial_headers: Dict[str, str], chain: web3data.chains.Chains)

	Bases: web3data.handlers.base.BaseHandler

The subhandler for contract-related queries.

	
audit(address: str, **kwargs) → Dict

	Retrieves the vulnerabilities audit for the specified contract (if
available).

The automated security checks are provided by MythX. Check out their
stellar service over at https://mythx.io/.

	Parameters

	
	address – The address to fetch information for

	kwargs – Additional query parameter options

	Returns

	The API response parsed into a dict

	
details(address: str, **kwargs) → Dict

	Retrieves all the detailed information for the specified contract
(ABI, bytecode, sourcecode…).

	Parameters

	
	address – The address to fetch information for

	kwargs – Additional query parameter options

	Returns

	The API response parsed into a dict

	
functions(address: str, **kwargs) → Dict

	Retrieves the functions of the specified contract (if available).

If not available on chain, the byte code is decompiled and a list
of functions is extracted from it.

	Parameters

	
	address – The address to fetch information for

	kwargs – Additional query parameter options

	Returns

	The API response parsed into a dict

web3data.handlers.market

This module contains the address subhandler.

	
class web3data.handlers.market.MarketHandler(initial_headers: Dict[str, str], chain: web3data.chains.Chains)

	Bases: web3data.handlers.base.BaseHandler

The subhandler for market-related queries.

	
base_wap_latest(base: str, **kwargs) → Dict

	Retrieves the latest VWAP & TWAP price for the specified base.

	Parameters

	base – The pair’s base

	Key quote

	The currency of the pair. Example: if pair is “eth_usd”,
then quote is “usd” (str)

	Key timeFormat

	Time format to use for the timestamps
(Options: milliseconds, ms, iso, iso8611) (str)

	Returns

	The API response parsed into a dict

	
exchanges(**kwargs) → Dict

	Retrieves information about supported exchange-pairs.

These types of data are supported:
- ticker
- ohlc (open-high-low-close)
- trade
- order_book
- order_book_update

	Key exchange

	only return data for the given exchanges (comma separated) (str)

	Key pair

	only return data for the given pairs (comma separated) (str)

	Returns

	The API response parsed into a dict

	
ohlcv(**kwargs) → Dict

	Retrieves information about supported exchange-pairs for ohlcv.

	Key exchange

	Filter by data for the given exchanges (comma separated). (str)

	Returns

	The API response parsed into a dict

	
ohlcv_pair_historical(pair: str, **kwargs) → Dict

	Retrieves the historical (time series) open-high-low-close for the
specified pair.

Note: This endpoint returns a max of 6 months of historical data. In order to get more
than 6 months you must use the startDate & endDate parameters to move the time frame
window to get the next n days/months of data.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve OHLCV.
Example: exchange=bitfinex,bitstamp (str)

	Key startDate

	Filter by pairs after this date. (int)

	Key endDate

	Filter by pairs before this date. (int)

	Key timeInterval

	Time interval to return the historical data
in (“days” | “hours” | “minutes”) (str)

	Key timeFormat

	Time format to use for the timestamps
(“milliseconds” | “ms” | “iso” | “iso8611”) (str)

	Returns

	The API response parsed into a dict

	
ohlcv_pair_latest(pair: str, **kwargs) → Dict

	Retrieves the latest open-high-low-close for the specified pair.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve OHLCV.
Example: exchange=bitfinex,bitstamp (str)

	Returns

	The API response parsed into a dict

	
order_best_bid_historical(pair: str, **kwargs) → Dict

	Retrieves historical best bid and offer information for the
specified pair.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve order book data.
Example: exchange=bitfinex,bitstamp (str)

	Key timeFormat

	The timestamp format to use for the timestamps:
milliseconds/ms or iso/iso8611. (str)

	Key startDate

	Filter by pairs after this date. (int)

	Key endDate

	Filter by pairs before this date. (int)

	Returns

	The API response parsed into a dict

	
order_best_bid_latest(pair: str, **kwargs) → Dict

	Retrieves the latest best bid and offer information for the
specified pair and exchange.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve order book data.
Example: exchange=bitfinex,bitstamp (str)

	Key timeFormat

	The timestamp format to use for the timestamps:
milliseconds/ms or iso/iso8611. (str)

	Returns

	The API response parsed into a dict

	
order_book(pair: str, **kwargs) → Dict

	Retrieves the order book data for the specified pair.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve order book data.
Example: exchange=bitfinex,bitstamp (str)

	Key timestamp

	The timestamp at which to return the order book information
(closest match, lower or equal to the timestamp specified). (str)

	Key timeFormat

	The timestamp format to use for the timestamps:
milliseconds/ms or iso/iso8611. (str)

	Key startDate

	Filter by pairs after this date. Formats:
milliseconds, iso, or iso8611 (str)

	Key endDate

	Filter by pairs before this date. Formats:
milliseconds, iso, or iso8611.
Note: Must be greater than startDate and cannot exceed 10 minutes. (str)

	Returns

	The API response parsed into a dict

	
order_book_updates(pair: str, **kwargs) → Dict

	
	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve order book data.
Example: exchange=bitfinex,bitstamp (str)

	Key timeFormat

	The timestamp format to use for the timestamps:
milliseconds/ms or iso/iso8611. (str)

	Key startDate

	Filter by pairs after this date. (int)

	Key endDate

	Filter by pairs before this date. (int)

	Returns

	The API response parsed into a dict

	
pairs(**kwargs) → Dict

	Retrieves information about supported exchange-pairs. These types of
data are supported:

	ticker

	ohlc (open-high-low-close)

	trade

	order_book

	order_book_update

	Key exchange

	only return data for the given exchanges (comma separated) (str)

	Key pair

	only return data for the given pairs (comma separated) (str)

	Returns

	The API response parsed into a dict

	
price_pair_historical(pair: str, **kwargs) → Dict

	Retrieves the historical prices for the specified asset.

	Parameters

	pair – The asset pair to look up

	Key timeFormat

	Time format to use for the timestamps
(Options: milliseconds, ms, iso, iso8611) (str)

	Key startDate

	Filter by prices after this date. (str)

	Key endDate

	Filter by prices before this date. (str)

	Key timeInterval

	Time interval to return the historical data
in (“days” | “hours” | “minutes”) (str)

	Returns

	The API response parsed into a dict

	
price_pair_latest(pair: str, **kwargs) → Dict

	Retrieves the latest price for the specified asset.

	Parameters

	pair – The asset pair to look up

	Key timeFormat

	Time format to use for the timestamps
(Options: milliseconds, ms, iso, iso8611) (str)

	Returns

	The API response parsed into a dict

	
price_pairs() → Dict

	Retrieves the assets for which latest prices are available.

	Returns

	The API response parsed into a dict

	
rankings(**kwargs) → Dict

	Retrieves the top ranked assets by a specific metric.

	Key direction

	The sort order in which assets are ranked ascending
or descending. (str)

	Key sortType

	The metric used to rank the assets.
Options: changeInPrice, currentPrice, liquidMarketCap, marketCap,
tokenVelocity, tradeVolume, transactionVolume, uniqueAddresses (str)

	Key timeInterval

	The time interval in which to return
the historical data days or hours. (str)

	Key type

	The type(s) of assets to include in the rankings:
erc20|, erc721, erc777, erc884, erc998. Note: leaving this
parameter empty means all tokens will be included. (str)

	Key page

	The page number to return. (int)

	Key size

	The number of records per page. (int)

	Returns

	The API response parsed into a dict

	
ticker_bid_ask_historical(pair: str, **kwargs) → Dict

	Retrieves the historical ticker, bid/ask/mid/last, for the specified
pair.

Note: This endpoint returns a max of 6 months of historical data. In order to get more
than 6 months you must use the startDate & endDate parameters to move the time frame
window to get the next n days/months of data.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve market tickers.
Example: exchange=bitfinex,bitstamp (str)

	Key startDate

	Filter by ticker pairs after this date. (int)

	Key endDate

	Filter by ticker pairs before this date. (int)

	Returns

	The API response parsed into a dict

	
ticker_bid_ask_latest(pair: str, **kwargs) → Dict

	Retrieves the latest market ticker Bid/Ask/Mid/Last for the
specified pair.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve market tickers.
Example: exchange=bitfinex,bitstamp (str)

	Returns

	The API response parsed into a dict

	
ticker_pairs(**kwargs) → Dict

	Retrieves the list of all available market tickers.

	Key exchange

	Only return data for the given exchanges (comma separated). (str)

	Returns

	The API response parsed into a dict

	
token_price_historical(address: str, **kwargs) → Dict

	
	Parameters

	address – The token’s smart contract address

	Key currency

	The additional currency (other than ETH and USD) for which
to return price info. (str)

	Key timeFormat

	The time format to use for the timestamps: milliseconds/ms
or iso/iso861. (str)

	Key timeInterval

	The time interval to return the historical data in:
by day (d),
by hour (h), or
by minute (m). (str)

	Key startDate

	Filter by prices after this date. Note that the interval can not exceed
6 months (d), 30 days (h) or 24 hours (m). (int)

	Key endDate

	Filter by prices before this date. Note that the interval can not exceed
6 months (d), 30 days (h) or 24 hours (m). (int)

	Returns

	The API response parsed into a dict

	
token_price_latest(address: str, **kwargs) → Dict

	Retrieves the latest price (and other market information) for the
specified token.

	Parameters

	address – The token’s smart contract address

	Key currency

	The additional currency (other than ETH and USD)
for which to return price info. (str)

	Returns

	The API response parsed into a dict

	
token_rankings_historical(**kwargs) → Dict

	Retrieves the top ranked tokens by a specific metric, with a
lookback window.

Useful for viewing token trends.

	Key direction

	The sort order in which tokens are ranked
(ascending or descending). (str)

	Key sortType

	The metric used to rank the tokens (changeInPrice,
currentPrice, marketCap, tokenVelocity, transactionVolume &
uniqueAddresses). (str)

	Key topN

	Number denominating top ranking tokens to return.
Example: If given “5”, results with return top 5 token
rankings for past timeframe, where there are 5 results
per day. (str)

	Returns

	The API response parsed into a dict

	
token_rankings_latest(**kwargs) → Dict

	Retrieves the top ranked tokens by a specific metric.

	Key direction

	The sort order in which tokens are ranked
(ascending or descending). (str)

	Key sortType

	The metric used to rank the tokens (changeInPrice,
currentPrice, marketCap, tokenVelocity, transactionVolume &
uniqueAddresses). (str)

	Key timeInterval

	The time interval to return the historical
data in: by day (days) or by hour (hours). (str)

	Key type

	The type(s) of tokens to include in the rankings
(erc20, erc721, erc777, erc884, erc998) (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page (int)

	Returns

	The API response parsed into a dict

	
trade_pairs_historical(pair: str, **kwargs) → Dict

	Retrieves the historical (time series) trade data for the specified
pair.

Note: This endpoint returns a max of 6 months of historical data. In order to
get more than 6 months you must use the startDate & endDate parameters to move
the time frame window to get the next n days/months of data.

	Parameters

	pair – The asset pair to look up

	Key exchange

	The exchange(s) for which to retrieve market trades. (str)

	Key startDate

	Filter by trades after this date. (int)

	Key endDate

	Filter by trades before this date. (int)

	Returns

	The API response parsed into a dict

	
trades(**kwargs) → Dict

	Retrieves the list of all available market trade data sets.

	Key exchange

	Only return data for the given exchanges (comma separated). (str)

	Returns

	The API response parsed into a dict

	
uniswap_liquidity(pair: str, **kwargs) → Dict

	Retrieves the Uniswap-specific ether and token balance pairs over
time.

Note: This endpoint returns a max of 6 months of historical data. In order
to get more than 6 months you must use the startDate & endDate parameters
to move the time frame window to get the next n days/months of data.

	Parameters

	pair – The asset pair to look up

	Key timeFormat

	The timestamp format to use for the timestamps:
milliseconds/ms or iso/iso8611. (str)

	Key startDate

	Filter to liquidity changes after this date (int)

	Key endDate

	Filter to liquidity changes before this date (int)

	Returns

	The API response parsed into a dict

web3data.handlers.signature

This module contains the address subhandler.

	
class web3data.handlers.signature.SignatureHandler(initial_headers: Dict[str, str], chain: web3data.chains.Chains)

	Bases: web3data.handlers.base.BaseHandler

The subhandler for signature-related queries.

	
details(signature: str) → Dict

	Retrieves detailed information about the specified signature hash.

	Parameters

	signature – The signature string to look up

	Returns

	The API response parsed into a dict

web3data.handlers.token

This module contains the address subhandler.

	
class web3data.handlers.token.TokenHandler(initial_headers: Dict[str, str], chain: web3data.chains.Chains)

	Bases: web3data.handlers.base.BaseHandler

The subhandler for token-related queries.

	
holders_historical(address: str, **kwargs) → Dict

	Retrieves the historical (time series) token holders for the
specified token address.

	Parameters

	address – The token’s smart contract address

	Key holderAddresses

	A comma separated list of addresses for which the historical
holdings are to be retrieved. (str)

	Key timeFormat

	The time format to use for the timestamps: milliseconds/ms or iso/iso861. (str)

	Key timeFrame

	The time frame to return the historical data in:
by day (1d, 2d, …, all),
by hour (1h, 2h, …, 72h),
by minute (1m, 2m, …, 360m) or
by tick (1t, 10t, …, 1000t). (str)

	Key includePrice

	Indicates whether or not to include price data
with the results. (bool)

	Key currency

	The currency of the price information. Options: usd, btc.
Only used in conjunction with includePrice. (str)

	Returns

	The API response parsed into a dict

	
holders_latest(address: str, **kwargs) → Dict

	Retrieves the token holders for the specified address.

	Parameters

	address – The token’s smart contract address

	Key numTokens

	Filter by token holders who own the specified amount
of tokens. (int)

	Key numTokensGt

	Filter by token holders who own more than the
specified amount of tokens (int)

	Key numTokensGte

	Filter by token holders who own more than or equal
to the specified amount of tokens (int)

	Key numTokensLt

	Fitler by token holders who own less than the
specified amount of tokens (int)

	Key numTokensLte

	Filter by token holders who own less than or equal
to the specified amount of tokens (int)

	Key tokenAddress

	Filter by token holders for this token (mandatory) (str)

	Key timestampGt

	Filter by token holders who started holding the token
after the specified date (int)

	Key timestampGte

	Filter by token holders who started holding the token
after or equal to the specified date (int)

	Key timestampLt

	Filter by token holders who started holding the token
before the specified date (int)

	Key timestampLte

	Filter by token holders who started holding the token
before or equal to the specified date (int)

	Key includePrice

	Indicates whether or not to include price data with
the results. Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page (int)

	Returns

	The API response parsed into a dict

	
supply_historical(address: str, **kwargs) → Dict

	Retrieves the historical token supplies (and derivatives) for the
specified address.

	Parameters

	
	address – The token’s smart contract address

	kwargs – Additional query parameter options

	Key timeFormat

	The time format to use for the timestamps:
milliseconds/ms or iso/iso861. (str)

	Key timeInterval

	The time interval to return the historical data in:
by day (days) or by hour (hours). (str)

	Key startDate

	Filter by token prices after this date
- note that the interval can not exceed 6 months (d), or 30 days (h). (int)

	Key endDate

	Filter by token prices before this date
- note that the interval can not exceed 6 months (d), or 30 days (h). (int)

	Returns

	The API response parsed into a dict

	
supply_latest(address: str) → Dict

	Retrieves the latest token supplies (and derivatives) for the
specified address.

	Parameters

	address – The token’s smart contract address

	Returns

	The API response parsed into a dict

	
transfers(address: str, **kwargs) → Dict

	Retrieves all token transfers involving the specified address.

	Parameters

	address – The token’s smart contract address

	Key amount

	Filter by token transfers which value is equal to this amount. (int)

	Key amountGt

	Filter by token transfers which value is greater than this amount. (int)

	Key amountGte

	Filter by token transfers which value is greater than or equal
to this amount. (int)

	Key amountLt

	Filter by token transfers which value is less than this amount. (int)

	Key amountLte

	Filter by token transfers which value is less than or equal
to this amount (int)

	Key blockNumber

	Filter by token transfers with this block number. (int)

	Key recipientAddress

	Filter by token transfers which recipient is the
specified address. (str)

	Key senderAddress

	Filter by token transfers which sender is the
specified address. (str)

	Key startDate

	Filter by token transfers which happened after this date. (int)

	Key endDate

	Filter by token transfers which happened before this date. (int)

	Key tokenAddress

	Filter by token transfers for this token. (str)

	Key transactionHash

	Filter by token transfers for this transaction hash. (str)

	Key page

	The page number to return. (int)

	Key size

	Number of records per page. (int)

	Key validationMethod

	The validation method to be added to the response:
none, basic, full. Default: none. (str)

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information. Options: usd, btc.
Only used in conjunction with includePrice. (str)

	Returns

	The API response parsed into a dict

	
velocity(address: str, **kwargs) → Dict

	Retrieves the historical velocity for the specified address.

	Parameters

	address – The token’s smart contract address

	Key timeFormat

	The time format to use with the timestamps: milliseconds/ms or iso/iso8611 (str)

	Key timeFrame

	The time frame to return the historical data in:
by day (1d, 2d, …, all),
by hour (1h, 2h, …, 72h) or
by minute (1m, 2m, …, 360m) (str)

	Returns

	The API response parsed into a dict

	
volume(address: str, **kwargs) → Dict

	Retrieves the historical number of transfers for the specified
address.

	Parameters

	address – The token’s smart contract address

	Key timeFormat

	The time format to use with the timestamps: milliseconds/ms or iso/iso8611 (str)

	Key timeFrame

	The time frame to return the historical data in:
by day (1d, 2d, …, all),
by hour (1h, 2h, …, 72h) or
by minute (1m, 2m, …, 360m) (str)

	Returns

	The API response parsed into a dict

web3data.handlers.transaction

This module contains the address subhandler.

	
class web3data.handlers.transaction.TransactionHandler(initial_headers: Dict[str, str], chain: web3data.chains.Chains)

	Bases: web3data.handlers.base.BaseHandler

The subhandler for transaction-related queries.

	
find(**kwargs) → Dict

	Retrieves all transactions matching the specified filters.

	Key status

	Filter by the status of the transactions to retrieve
(all, completed, failed, pending). (str)

	Key startDate

	Filter by transactions executed after this date. Note that the interval
can not exceed 1 minute (startDate and endDate should be both specified, or both empty) (int)

	Key endDate

	Filter by transactions executed before this date. Note that the interval
can not exceed 1 minute (startDate and endDate should be both specified, or both empty). (int)

	Key validationMethod

	The validation method to be added to the response:
none, basic, full. Default: none. (str)

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Key size

	The number of results to return. (int)

	Key includeFunctions

	Indicates whether or not to include log
information for each transaction, if available (false|true) (bool)

	Key includeLogs

	Indicates whether or not to include price information (false|true) (bool)

	Key includeTokenTransfers

	Indicates whether or not to include token
transfers information for each transaction, if available (false|true) (bool)

	Returns

	The API response parsed into a dict

	
gas_percentiles(**kwargs) → Dict

	Retrieves the latest gas price percentiles for the transactions.

	Key numBlocks

	Number of past blocks on which to base the percentiles. (int)

	Returns

	The API response parsed into a dict

	
gas_predictions() → Dict

	Retrieves the latest gas predictions for the transactions.

	Returns

	The API response parsed into a dict

	
information(tx_hash: str, **kwargs) → Dict

	Retrieves the transaction information for the specified hash.

	Parameters

	tx_hash – The transaction hash to fetch information for

	Key validationMethod

	The validation method to be added to the response:
none, basic, full. Default: none. (str)

	Key includePrice

	Indicates whether or not to include price data with the results.
Options: true, false. (bool)

	Key currency

	The currency of the price information (usd or btc.)
- only used in conjunction with includePrice. (str)

	Returns

	The API response parsed into a dict

	
metrics() → Dict

	Get metrics for recent confirmed transactions for a given
blockchain.

	Returns

	The API response parsed into a dict

	
token_transfers(tx_hash: str) → Dict

	Retrieves the token transfers that took place in the specified
transaction.

	Parameters

	tx_hash – The transaction hash to fetch information for

	Returns

	The API response parsed into a dict

	
volume(**kwargs) → Dict

	Retrieves the historical (time series) volume of transactions.

	Parameters

	kwargs – Additional query parameter options

	Key timeFormat

	The time format to use for the timestamps: milliseconds/ms or iso/iso861. (str)

	Key timeFrame

	The time frame to return the historical data in:
by day (1d, 2d, …, all),
by hour (1h, 2h, …, 72h) or
by minute (1m, 2m, …, 360m) (str)

	Returns

	The API response parsed into a dict

web3data.handlers.websocket

This module implements the websocket handler.

	
class web3data.handlers.websocket.WebsocketHandler(api_key: str, blockchain_id: str, url: str = None)

	Bases: object

The subhandler for websocket-related queries.

	
on_close(ws)

	A user-defined handler for websocket close events.

	Parameters

	ws – The websocket client instance

	
on_error(ws, error)

	A user-defined handler for websocket errors.

	Parameters

	
	ws – The websocket client instance

	error – The error message

	
on_open(ws)

	A user-defined handler for websocket open events.

	Parameters

	ws – The websocket client instance

	
register(params: Union[Iterable[str], str], callback=None)

	Register a new event to listen for and its callback.

This will subscribe to the given event identifiers and execute
the provided callback function once the specified event is coming
in. Please note that the listening and callback-handling routine
only starts once the websocket client is running.

The callback function should take two parameters:
ws and message. The first parameter is the websocket
client instance, which allows the user to update the client context.
The latter argiment is the message, deserialized from the JSON object
received by the websocket server.

	Parameters

	
	params – The event to subscribe to

	callback – The callback function to execute

	
run(**kwargs)

	Run the websocket listening loop.

This is a blocking endless loop that will send the subscription
events to the websocket server, handle the responses, and then
distribute the incoming messages across the registered callbacks.

Any keyword arguments passed to this method are passed on to the
websocket client’s run_forever method. Please consult the
project’s documentation for more details:
https://pypi.org/project/websocket_client/

	Parameters

	kwargs – Additional arguments to pass to the websocket client

	
unregister(external_id)

	Unregister a subscription from the websocket server.

Given an external ID (i.e. the subscription ID), this will
remove the subscription data including locally stored payloads
and identifiers. It will also trigger an unsubscribe message
for the subscription being sent to the websocket server.

	Parameters

	external_id – The subscription ID to remove

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dmuhs/web3data-py/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

web3data-py could always use more documentation, whether as part of the
official web3data-py docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dmuhs/web3data-py/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up web3data for local development.

	Fork the web3data repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/web3data-py.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv web3data-py
$ cd -py/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests:

$ flake8 web3data tests
$ python setup.py test or pytest
$ make test

To get flake8, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/dmuhs/web3data-py/pull_requests
and make sure that the tests pass for all supported Python versions.

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Dominik Muhs <dmuhs@protonmail.ch>

Contributors

None yet. Why not be the first?

History

0.1.7 (2021-02-10)

	Add deprecation warning for Uniswap liquidity endpoint

0.1.6 (2021-01-25)

	Add CSV format switch support

	Various dependency upgrades

0.1.5 (2020-05-22)

	Include missing files in sdist

	Update pip to 20.1.1

	Update bumpversion to 0.6.0

	Update flake8 to 3.8.1

	Update pytest to 5.4.2

	Update requests-mock to 1.8.0

0.1.4 (2020-04-28)

	add support for RPC endpoints

	add support for websocket endpoints

	add examples for rpc and websocket calls

	update coverage to 5.1

	update sphinx to 3.0.3

0.1.3 (2020-03-16)

	update coverage from 4.5.4 to 5.0.3

	update flake8 from 3.7.8 to 3.7.9

	update pip from 19.2.3 to 20.0.2

	update pytest from 4.6.5 to 5.4.1

	update pytest-runner from 5.1 to 5.2

	update sphinx from 1.8.5 to 2.4.4

	update twine from 1.14.0 to 3.1.1

	update watchdog from 0.9.0 to 0.10.2

	update wheel from 0.33.6 to 0.34.2

0.1.1 + 0.1.2 (2020-03-15)

Add minor documentation, markup, and package publishing fixes

0.1.0 (2020-03-15)

First release on PyPI

0.0.1 (2020-03-13)

First implementation for the
Amberdata developer challenge [https://medium.com/amberdata/developer-challenge-scale-defi-digital-assets-d71015200325]

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 web3data	

 	
 	
 web3data.chains	

 	
 	
 web3data.client	

 	
 	
 web3data.exceptions	

 	
 	
 web3data.handlers	

 	
 	
 web3data.handlers.address	

 	
 	
 web3data.handlers.api	

 	
 	
 web3data.handlers.base	

 	
 	
 web3data.handlers.block	

 	
 	
 web3data.handlers.contract	

 	
 	
 web3data.handlers.market	

 	
 	
 web3data.handlers.signature	

 	
 	
 web3data.handlers.token	

 	
 	
 web3data.handlers.transaction	

 	
 	
 web3data.handlers.websocket	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	AddressHandler (class in web3data.handlers.address)

 	adoption() (web3data.handlers.address.AddressHandler method)

 	
 	APIError

 	APIHandler (class in web3data.handlers.api)

 	audit() (web3data.handlers.contract.ContractHandler method)

B

 	
 	balance_historical() (web3data.handlers.address.AddressHandler method)

 	balance_latest() (web3data.handlers.address.AddressHandler method)

 	balances() (web3data.handlers.address.AddressHandler method)

 	balances_batch() (web3data.handlers.address.AddressHandler method)

 	base_wap_latest() (web3data.handlers.market.MarketHandler method)

 	
 	BaseHandler (class in web3data.handlers.base)

 	BCH (web3data.chains.Chains attribute)

 	BlockHandler (class in web3data.handlers.block)

 	BSV (web3data.chains.Chains attribute)

 	BTC (web3data.chains.Chains attribute)

C

 	
 	Chains (class in web3data.chains)

 	
 	ContractHandler (class in web3data.handlers.contract)

D

 	
 	details() (web3data.handlers.contract.ContractHandler method)

 	(web3data.handlers.signature.SignatureHandler method)

E

 	
 	EmptyResponseError

 	ETH (web3data.chains.Chains attribute)

 	
 	ETH_RINKEBY (web3data.chains.Chains attribute)

 	exchanges() (web3data.handlers.market.MarketHandler method)

F

 	
 	find() (web3data.handlers.transaction.TransactionHandler method)

 	
 	functions() (web3data.handlers.block.BlockHandler method)

 	(web3data.handlers.contract.ContractHandler method)

G

 	
 	gas_percentiles() (web3data.handlers.transaction.TransactionHandler method)

 	
 	gas_predictions() (web3data.handlers.transaction.TransactionHandler method)

H

 	
 	holders_historical() (web3data.handlers.token.TokenHandler method)

 	
 	holders_latest() (web3data.handlers.token.TokenHandler method)

I

 	
 	information() (web3data.handlers.address.AddressHandler method)

 	(web3data.handlers.transaction.TransactionHandler method)

 	
 	internal_messages() (web3data.handlers.address.AddressHandler method)

L

 	
 	LIMITED (web3data.handlers.base.BaseHandler attribute)

 	logs() (web3data.handlers.address.AddressHandler method)

 	(web3data.handlers.block.BlockHandler method)

 	
 	LTC (web3data.chains.Chains attribute)

M

 	
 	MarketHandler (class in web3data.handlers.market)

 	metadata() (web3data.handlers.address.AddressHandler method)

 	metrics() (web3data.handlers.address.AddressHandler method)

 	(web3data.handlers.transaction.TransactionHandler method)

 	metrics_historical() (web3data.handlers.block.BlockHandler method)

 	metrics_latest() (web3data.handlers.block.BlockHandler method)

 	
 module

 	web3data

 	web3data.chains

 	web3data.client

 	web3data.exceptions

 	web3data.handlers

 	web3data.handlers.address

 	web3data.handlers.api

 	web3data.handlers.base

 	web3data.handlers.block

 	web3data.handlers.contract

 	web3data.handlers.market

 	web3data.handlers.signature

 	web3data.handlers.token

 	web3data.handlers.transaction

 	web3data.handlers.websocket

O

 	
 	ohlcv() (web3data.handlers.market.MarketHandler method)

 	ohlcv_pair_historical() (web3data.handlers.market.MarketHandler method)

 	ohlcv_pair_latest() (web3data.handlers.market.MarketHandler method)

 	on_close() (web3data.handlers.websocket.WebsocketHandler method)

 	on_error() (web3data.handlers.websocket.WebsocketHandler method)

 	
 	on_open() (web3data.handlers.websocket.WebsocketHandler method)

 	order_best_bid_historical() (web3data.handlers.market.MarketHandler method)

 	order_best_bid_latest() (web3data.handlers.market.MarketHandler method)

 	order_book() (web3data.handlers.market.MarketHandler method)

 	order_book_updates() (web3data.handlers.market.MarketHandler method)

P

 	
 	pairs() (web3data.handlers.market.MarketHandler method)

 	pending_transactions() (web3data.handlers.address.AddressHandler method)

 	
 	price_pair_historical() (web3data.handlers.market.MarketHandler method)

 	price_pair_latest() (web3data.handlers.market.MarketHandler method)

 	price_pairs() (web3data.handlers.market.MarketHandler method)

R

 	
 	rankings() (web3data.handlers.market.MarketHandler method)

 	raw_query() (web3data.handlers.base.BaseHandler static method)

 	
 	register() (web3data.handlers.websocket.WebsocketHandler method)

 	rpc() (web3data.handlers.api.APIHandler method)

 	run() (web3data.handlers.websocket.WebsocketHandler method)

S

 	
 	SignatureHandler (class in web3data.handlers.signature)

 	single() (web3data.handlers.block.BlockHandler method)

 	
 	supply_historical() (web3data.handlers.token.TokenHandler method)

 	supply_latest() (web3data.handlers.token.TokenHandler method)

T

 	
 	ticker_bid_ask_historical() (web3data.handlers.market.MarketHandler method)

 	ticker_bid_ask_latest() (web3data.handlers.market.MarketHandler method)

 	ticker_pairs() (web3data.handlers.market.MarketHandler method)

 	token_balances_historical() (web3data.handlers.address.AddressHandler method)

 	token_balances_latest() (web3data.handlers.address.AddressHandler method)

 	token_price_historical() (web3data.handlers.market.MarketHandler method)

 	token_price_latest() (web3data.handlers.market.MarketHandler method)

 	token_rankings_historical() (web3data.handlers.market.MarketHandler method)

 	token_rankings_latest() (web3data.handlers.market.MarketHandler method)

 	token_transfers() (web3data.handlers.address.AddressHandler method)

 	(web3data.handlers.block.BlockHandler method)

 	(web3data.handlers.transaction.TransactionHandler method)

 	
 	TokenHandler (class in web3data.handlers.token)

 	total() (web3data.handlers.address.AddressHandler method)

 	(web3data.handlers.block.BlockHandler method)

 	trade_pairs_historical() (web3data.handlers.market.MarketHandler method)

 	trades() (web3data.handlers.market.MarketHandler method)

 	TransactionHandler (class in web3data.handlers.transaction)

 	transactions() (web3data.handlers.address.AddressHandler method)

 	(web3data.handlers.block.BlockHandler method)

 	transfers() (web3data.handlers.token.TokenHandler method)

U

 	
 	uniswap_liquidity() (web3data.handlers.market.MarketHandler method)

 	
 	unregister() (web3data.handlers.websocket.WebsocketHandler method)

 	usage() (web3data.handlers.address.AddressHandler method)

V

 	
 	velocity() (web3data.handlers.token.TokenHandler method)

 	
 	volume() (web3data.handlers.token.TokenHandler method)

 	(web3data.handlers.transaction.TransactionHandler method)

W

 	
 	
 web3data

 	module

 	Web3Data (class in web3data.client)

 	
 web3data.chains

 	module

 	
 web3data.client

 	module

 	
 web3data.exceptions

 	module

 	
 web3data.handlers

 	module

 	
 web3data.handlers.address

 	module

 	
 web3data.handlers.api

 	module

 	
 web3data.handlers.base

 	module

 	
 	
 web3data.handlers.block

 	module

 	
 web3data.handlers.contract

 	module

 	
 web3data.handlers.market

 	module

 	
 web3data.handlers.signature

 	module

 	
 web3data.handlers.token

 	module

 	
 web3data.handlers.transaction

 	module

 	
 web3data.handlers.websocket

 	module

 	WebsocketHandler (class in web3data.handlers.websocket)

Z

 	
 	ZEC (web3data.chains.Chains attribute)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to web3data-py’s documentation!

 		
 web3data-py Python API

 		
 Obtaining an API Key

 		
 Installation

 		
 Usage

 		
 Development

 		
 Resources

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Supported Chains and Handlers

 		
 web3data Package

 		
 Subpackages

 		
 web3data.client

 		
 web3data.exceptions

 		
 web3data.chains

 		
 web3data.handlers

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.7 (2021-02-10)

 		
 0.1.6 (2021-01-25)

 		
 0.1.5 (2020-05-22)

 		
 0.1.4 (2020-04-28)

 		
 0.1.3 (2020-03-16)

 		
 0.1.1 + 0.1.2 (2020-03-15)

 		
 0.1.0 (2020-03-15)

 		
 0.0.1 (2020-03-13)

